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The hydrodynamic theory of intense charged-particle beams is one of the branches of 

the mechanics of continuous media. However, in contrast to, say, hydrodynamics, the 
problem in this ease cannot be regarded as completely solved once one has integrated 

the beam equations which include the Maxwell equations and the equations of a charge 

in the self-consistent field. Within the framework of the standard formulation (the in- 

verse problem) the solution defines flow in a half-space bounded by an infinite emitting 

surface, whereas real beams have finite dimensions. The flow in a domain with bounded 

transverse coordinates can be determined by finding the electrostatic Laplacian field 

equivalent to the discarded portion of the stream which matches continuously the solu- 

tion of the beam equations at the boundary. This problem is called the ‘“shaping” or 
“electrostatic focus~g” problem ; its mathematical expression is the Cauchy problem 
for the Laplace equation. We consider three-dimensional shaping problems in the ease 

of cylindrical and axially symmetric charge-filled domains. We also write out the solu- 

tions for the periodic focusing of a cylindrical beam of arbitrary cross section and for 

the shaping of an elliptical beam with periodic variation of the z-component of the 
velacity ; the expression for the potential outside a cylindrical beam of arbitrary cross 

section with emission bounded by a space charge is given in closed form. 
The problem of shaping of intense charged-particle beams in mathematical formula- 

tion reduces to the Cauchy problem for the Laplace equation. Two-dimensional configura- 

tions are investigated in n, ‘21. In [1] the problem is solved by separation of variables 

and the solution expressed as a contour integral in the complex plane of the parameter 
p ; the author of r2] used an analytical continuation of the Laplace equation to construct 

an expression for the potential by the Riemann method. 
In dealing with three-dimensional problems in [3] we obtained solutions in the coor- 

dinate system xi attached to the beam surface x r = 0 in the form of a series in powers 

of xX with coefficients which depend on 2% and za3. This method is suitable for obtaining 

the solution sufficiently near the boundary (the suitabi~~ criterion is the magnitude of 
the discrepancy) in the case where the Cauchy conditions are given by regular functions. 
This excludes streams whose velocity vanishes somewhere for a nonzero current density, 
and especially flows originating at the emitting surface (the potential near this surface 

during emission bounded by a space charge varies as z“% 
There appears to have been a single attempt [4] to determine the shaping electrodes 

for a cylindrical beam with an elliptical cross section for which the Cauchy conditions 
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correspond to flow in a plane diode: cp = ~‘~8, 3cp 1 an = 0. However, the results and the 
proposed approximate method of calculating equipotential surfaces is based on the false 

assumption that the solution is independent of 7) (5, 11, z are the elliptical cylindrical 
coordinates). Hence, only the formulation of the problem in [4] remains valid. 

In the present paper we solve the three-dimensional Cauchy problem for cylindrical 
domains of arbitrary smooth cross section and for two types of axially symmetric domains: 

a domain bounded by a surface of revolution with an arbitrary law of growth of the cir- 

cular cross section and a toroid of arbitrary cross section. our procedure is based on the 
isolation of z in the cylindrical case and of II, (the azimuth) in the axially symmetric 

case by Fourier transformation (for regular Cauchy conditions) or Laplace transformation 

(for irregular functions) followed by exact solution of the remaining two-dimensional 

problem by the Riemann method. 

To illustrate our technique we obtain approximate and exact solutions for the periodic 

focusing of a cylindrical beam of arbitrary cross section (the approximate solution appro- 
ximates the true distribution of the potential at the boundary with the aid of the cosine 

[S]). We also write out the expression for the potential in the case of an elliptical beam 

with periodic variation of the z -component of the velocity [6]. 

In the case of a cylindrical beam with an arbitrary cross section the Lipschitz-Hankel 
condition enables us to integrate along a contour in the p-plane and to express the solu- 

tion for the shaping of a flow described by a Sir law in closed form. We show that the 

angle of inclination of the shaping electrode with a zero potential does not depend on 
the shape of the boundary and constitutes 67”. 5 as in the two-dimensional case. Know- 
ledge of the exact solution for the boundary which can be specified parametrically in 

terms of analytic functions enables us to construct an approximate expression for a non- 

analytic parametric equation (e. g. for a square). 

The solution of the shaping problem of a toroidal beam of arbitrary cross section in 
the case of flow along circular trajectories [7] is written out in terms of contour integrals 

in the p-plane. 
The properties of special functions used in the study are discussed in [8, 91. 

1. A cylindricrl domofn of arbitrary cro88 Bectfon. The problem 

consists in solving the Laplace equation a’cp _+$+$=o 
ax% (1.1) 

when the Cauchy conditions are given at the bound- 
ary 2 of the domain. Q shown in Fig. 1. Let the 

directrix of the cylinder r be defined by the para- 

metric equations 

5 = xe (0, Y = Ye V) 

dx, / dt = a (t), dy, I dt = fl (t) (I.4 

and let the potential and its normal derivative on 

Fig. 1 E be given by the functions V, and v, 

cp I, = V, (& z), @lN, = v,(t, 2) (1.3) 
It is clear that the transformations 

x + iy = x, (w) + iy, (w), W =u+iv 

map the real axis v = 0 in the plane w onto r in the plane X, y. Under this mapping 
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Eq. (1.1) becomes 
a7(P 

-+ au” 

where g = g (u, V) is the determinant of the metric tensor gi, of the system U, n, z. 

If V,, V,,, are regular in z, we shall attempt to find the solution of problem (1.1) , 
(1.3) in the form 

‘p(u,u,z)= 3 cD(u,v;p)einZdp 
--m 

The function @ (u, V; p), which we shall refer to as the “two-dimensional potential”, 

then satisfies the equation 
aw 

Here we have 
-+ @@ 
&L2 

--p2@D=o 
W 

at 21 = 0. 
Q, 10-O = 6 (u; p), aa / dz&O = f (u; p) 

(1.4) 

(4.5) 

Here 6 (u; P), f (u; p) are the spectral densities of the Cauchy conditions, 

up lvEo = v, (u, 2) = v (7.4, z), acp / a211,=o = (~22 + p2ywne (~4, 2) = F (u, 2) 

If we attempt to find the solution in the form of a Fourier series or with the aid of 

Laplace transformation, then these quantities are Fourier coefficients or the images of 
the functions J’, F. In the latter case the p in (1.4) must be replaced by ip. 

1.1. Solution of two-dimensional problem (1.4), (1. 5). Let us 
effect the analytical continuation of the parameter u, replacing it by u + iE. Equation 

(1.7) then becomes hyperbolic. 

The system U, 21, E is shown in Fig.2. Here c is 
the point at which the potential is calculated (the obser- 

vation point); v -j- E = v, are the characteristics - 
passing though this point. The Cauchy conditions are 

specified on &? as the analytical continuation of func- 

tions (1.5). Applying the Riemann method /JO], we 

Fig. 2 

to zero, 

Here G (the Riemann function) satisfies the same 
equation as Q and assumes the value unity at the char- 
acteristics, since the first derivatives in (1.6) are equal 

Zg+F - p2G = 0 (1.8) 
The coordinates of the point C in the system J;, y are defined by the expressions 

x, = Re X~(U + iv,) - Im ye (u + iv,) 
Y, = Imx, (u + iv,) + Re y, (u + ivc) 

, 
Noting, in addition, that 

(x - %)2 + (Y - Y,)” = 0 

on the characteristics z & iy = xc -&. iy, , we seek G in the form G = G (A), where 

h = ip[(x - h)” + (y - y,)21”~ 
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the subscript “e” in (1.10) arises because of the fact that integration is carried out along 
that half of AB where 21 = 0; se, yet o, p are functions of%; the subscripts “c” are 

omitted, so that the ob~rvation point now has the coordinates q &q r& zi. 

In constructing the solution in the form of Fourier series it is helpful to carry out the 

following transformation (identical in the case of infinite series) : 

c &% -4S --(YC-- 

(ft+> = fg) co.9 pz -j- fF> sin pz (LU) 

This expression satisfies the conditions at the boubdary exactly with any number of 
terms rerained in the series ; f#-) and &W are the 

I Fourier coefficients of the function P. 

X,2. Examples: approximate and exact 
solutions for periodic focusing. In con- 

“m sidering the problem of periodic focusing of plane 

and cylindrical beams the author of [5] adopted the 

5 

cm5 A@ 
2s 

following approximation of the true potential distri- 

budon at the boundary (Fig. 3) : 

Fig. 3 v=r--(i -~~~~o~(~2/2o~, F=O (Ll2) 

l&t us cut the domain 8 out of a plane diode in 

which the potential varies as shown in Fig, 3, Making use of the above formulas and 

recalling that 6 0 I= 1, 6x = CC, - 1, 6, = G (p = 2,3,*,,), . in = 0 (p = 3,&J 

we obtain an approximate solution for periodic focusing of a cylindrical beam of arbi- 

~~~~~~~~~~~f~(~~ BeI X+-z Jr(%,)[fzl, -2)$-(3, -&sqd~j X 
0 
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3x2 rG 
XCOS~, p=i&. (1.13) 

The exact expression for V = V (z) can be given parametrically, (1.14) 

l.7 = (l/$2 - */,t,t + I)$, z = ‘I& - ‘/rt,P + t, 0 G t < tot to=3Yri--JfaT 

It is sufficient to determine the potential in the interval 0 < z $ o. The Fourier coef- 
ficients for (1. X4) then become 

to to 
4 1 

%(C)=~l+2~m 
4 1 l-u --- 
9 crp” s cos pz dt, i$@’ = -+ + + -$ c 

sin pz dt 

(p&,s,q= 1,2,...) 
“0 

and formula (1.11) yields P) 

q (z, Y, s) = V (2) + Re 5 P? <@eQ”> 1 A,-~J~(x,II(z~- z> p -(ye - y) a] dt; (2.25) 
p=1 0 

2. An elliptical cylinder. It is possible in certain cases to express the solu- 

tion in more compact form by carrying out analysis in a system attached to the beam 

surface. Let .$ q, z be such a system and let E = &be the equation of 2 , 

Fig. 4 

Introducing the new variables 

r;=E+is, C=E-iq 
we find that the tw~~mensional potential must satisfy 
the equation 4 a 

agaf 
= p” v’g@ (2.1) 

If ‘fg = U’ (c)b’ (g), then the introduction of h 

by way of the formula 

h = ip {[a (5) - a (r;,)l~ 0 (El - b (mP 
yields the zero-order Bessel function Jo (A) for G 
Separation of variables in the determinant of the metric 

tensor is possible,for example,in elliptical and parabolic 

coordinates. For an elliptical cylinder (Fig. 4) we have 

x=a~~shEsinq, y=ay’~--1chEcoq thaEo= 1 /p 

a(Q=aJ&-1ch5, b(&a~f34ch5, P=(~/Q)~ 

Making use of the formula given in PO] and carrying out the appropriate transforma- 
tions, we arrive at the following expression for @ (E, 11; p): 

Q(L~;p)=RWW)+Im i G4N(w4- 
0 

- puff3 - 1 II (k,) Re [sh (E. - iz) et+] 6 (z; p)} dz 

IT=rj+i(E-EO), ic,=pav/p-$1 (2.2) 

P = I ch (Et, + W --h(E+ %)I, II, = arg Ich (E. + iz) - ch (g i- iq)l 

In deriving (‘2.2) we took into account the fact that $. is a purely imaginary argument, 
In the case of an elliptical beam with potential (I., 1’2) the use of general formula 
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(2.2) yields 

(2.3) 

NOW let US consider the problem of shaping of a flow with an elliptical boundary in 

which the z-component of the velocity varies periodically [6]. The Cauchy conditions 
at 5 = co are co 

v I% 9) = tir (rl) + w (z) = 2 *rj (rl; P) cos PZ, P=F(n) (2.4) 

x-0 

The functfan W = W (4 can be expressed paramet~~a~ly* 

w = (1 - 7 co.9 f)2* z = t - y smt 

The functions V;, (11) and F (q) are explained in [3] I 

a Pi-1 I 

t, 
P-1 --cos2q ) ) F(q)~w+~) 1 

( 
v-1 

~oPl)=y--p- P-l-1 P Ys -_p,cos2q 
) 

,u= const 

The Fourier coefficients in conditions (2.4) are given by 

fo=F(#& f,=o (p==1,2,*..f WI 
Here Jp is a Bessel function, flaking use of (2.2), C&5), we arrive at the following 

expression for the potential: 

p=1 

8. Irregular Couchy condttfon, far L ayffndrfcrl domafn of 
arbitrary crwt cectfon. If the Cauchy conditions at X become irregular func- 

tions. then the Fourier series apparatus is no longer applicable anf must be replaced by 
taplace transformation. Here each specific case requires special analysis, since the sol- 
ving procedure enrails ~g~~ari~ati~ of definite integrals which depends on the form of 

the integrand. We shall consider the practically important case where the domain &I is 
cut out of a plane diode with emission bounded by a space charge, We then have 

v = Z%) F--O (3.11 
at the surface z‘ of the cylinder. 

We can show Q] that $!a is given by 

z’is = 1 TCdp 

r (--‘/s/9) {t;, JJ”B 
(3.2) 

Here F (z) is a gamma function. The Cauchy conditions for @ fu, t’; p)are as fol- 
lows : 6 = 6 @f = p-” / r f-4& f=O (3.3) 

Substituting (3.3) into (Z.lOj and replacing p by ip in this formula, we obtain the 
solution in the form 
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Contour integration in the p-plane in (3.4) can be carried out with the aid of the 

Li~chitz-Hazel integral 
co 

s eeppqwl J, (bp) dp = bYl- (v + 9) b” 

0) 2+a + F)‘” (*+@l- (1 +v) 
F v+q *$-v--q ( -’ 2 2 *v-/-i; - a* + ) &2 

(3.5) 
Re[(a $I ib)pl >O, p-+ 00 

Here F (4 b, C; 2) is a hypergeometric function. Thus, 

where 
P = I(& - 2)” 4 (yc - y)V 

can be regarded as the analytical continuation of the distance between the projection 
of the point of observation of the plane x, y and a point on I’. On fulfillment of the 

additional condition la+ ib1GJu-iibI (3.7) 
the hypergeometric function in (3.5) can be expressed in terms of the Legendre function. 
Since z > 0, we must replace condition (3.7) by the requirement that Imr < O.Thus. 

for Imr < 0 we have 

cp (5, $4, 2) = 2”s - Re i ,.,~(~~~)~~~~-~~~~,,~ @$(‘) dE (3.8) 
c c 

8 = 11 + (r I z)~]-‘~~, Imr f 0 

Expressions (3.6). (3.8) yield the solution of our problem. 
3.1. The angle of inclination of the shaping electrode at zero 

potential. Let us consider expression (3.7) in the neighborhood of emitting surface 

z = 0 and near the beam boundary I:. The smallness of 21, E, z enables us to make 
certain simplifications, xc (5) = xe(u + iE) = x8(U) + a (U)iE 

Yea = Ye& + G) = Ye@) + p (u)iE 

2 + iY = xe(u + W + Qk (u + iv) = x (u, 77) + iy (24, v)] (3.9) 
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We have made use of the aforementioned Cauchy-Riemann conditions for v = 0 in 

the two latter equations. Applying (3.9). we obtain 

?-s = (a” + fis)(V 2- Es), (x, - z) 3 - (yc - y) a = (a” + B”) v 

The equation of the zero equipotential with allowance for the above formulas becomes 

0 = 2% - z-‘ls(u2 + p”) v s [I + (a2 -/- P2) -g (1 - $j]-“’ x 
0 

x Pf/,’ 
(i 

1 + (a2 $_P2) _L(j _ _zj]-“2 p 

where the prime denotes the derivative with repect to the argument, Recalling that the 

distance measured along the normal to r is related to v by the expression 

(a2 + /3”)vz = n2 

introducing the new integration variable q = E / 21 , and making use of the explicit 
expression of the zero equipotential in the plane n, z 

n = e2 + . . . . e = e (u) 

we obtain the following equation for determining 0 : 
1 

1 
- = S f-i + ey1 - q)~-*/~ P+,‘([1 + fP(l - q2)]-*f+dq (3.10) 

8y 
0 

Equation (3.10) indicates that the inclination of the zero-equi~tential does not depend 

on the shape of the boundary. We know that in the case of plane and axisymme~ic flows 

(and specifically in the case of an ordinary cylindrical beam) this angle is equal to 

67”. 5. Thus,.the 8 in (3.9) is 8 = eonst = 1 + J (3.11) 

Computation of the coefficients in the (n, z)-equation of the zero equipotential can 

be continued. The resulting definite integrals, which do not depend on the shape of the 
boundary, can be estimated from the known expansion for a circular cylindrical beam 

obtainable from the formulas of pl]. Thus, the curvature of the zero shaping electrode 
turns out to be proportional to the curvature kr of the contour I’, where the proportion- 

ality coefficient is the numerical value of the curvature of the zero equipotential in the 
case of a circular cylinder 

IQ, = --$-sin+ 
af3’ - a’P 

@3 + pp =-&sin+ kp 

3. 2. Cylindrical and elliptical beams. For a cylindrical beam with a 
disk-shaped cross section we have 

2 = xe (t) = Cost, y = ye (t) = sin t, a (t) = -sin f, p (t) = cost 
x + iy = ReiQ = eiw, 2 = e-v cos u, y = e-v sin u, u = 9, v = -1nR 

(% - 40 - (Ye - y) a = I - e-O chg 

12 = (& - d2 + (Yc - $)a = 2e-” (chv - chc) 

Since r is real, we can make use of formula (3. 8). The appropriate transformations 
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Expression (3.12) is a new form of the solution different from that given in @]. 
It is clear that direct application of the procedure of Sect. 1 to an elliptical beam 

yields extremely cumbersome expressions for the integrand. Let us therefore use the 
results of Sect. 2. Condition (3.7) is always fulfilled, since u and b are real in this case. 
This enables us to write 

3.3. Some generalizations. It is clear that the results expressed by formu- 

las (3.5). (3.8) can be readily extended to the case where the boundary conditions are 
given by arbitrary power functions of z with coefficients dependent on u 

(3.14) 

Fig. 5 

In constructing the solution we assumed 

that the functions x, (t), y, (t) are analytic. 

However, analytic parametric functions can 
describe curves of the astroid type which 

contain cusps. The zero equipotential then 

contains lines of discontinuity, At the same 
time, if we have an exact solution which 
can be used for the analytic parametric 

specification of I’, then we can attempt to 
construct an approximate solution for nonanalytic parametric relations by expanding 
them in a Fourier series. For example. if I.’ is a square, then it is described by the func- 
tions Z~ (t), gjL (t) shown in Fig. 5. Here 

v (4 4 = v, (u)z”, F (u, z) = F, (u)z’” 

Conditions of the type (3.14) occur in 
computing a slightly curved cylindrical beam. 

co 

ze (t) = 2 a2k+l cm (Zk + if t, 
k=o 

Ye w 
k==o 

a 
4qc1= %q-1 

==b 
4q+f.=- 

b 
4 2q cos ‘14 (21- 1) x 

49-l- --- X Is 2 21 - 1 + In tg $- 1 
I=1 

Here t is an ordinary polar angle; the pole lies at the center of the square whose side 
is equal to 2. 

4. Domain8 with axial aymmstry. In the 
R 

axisymmetric case we use the Laplace equation written 
out in the ordinary cylindrical coordinates R, 9, z 

-- (4.1) 

The domain Q is obtained by rotating the curves rr, 

I?, shown in Fig. 6 about the z-axis ; lJl yields the sur- 
face of revolution with an arbitrary law of variation of 

2 

Fig. 6 
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the cross-section radius; r, yields a toroidal domain of arbitrary cross section. The 

curves f are given by the parametric equations 

R = R, (t), i? = z,(t); dR, / dt = a (t), dz, I dt = #I (t) G.2) 
and the Cauchy conditions for Cp by the formulas 

4. I, Solving the two-dimensional problem. The problem consists in 

determining the two-dimensional potential 4i, (R, z; p), 

(4.4) 
satisfying the conditions 

CD Iv==* = 6 (u; $2) 
on r . 

The mapping of the ancillary plane w = u + iv onto the meridian plane is defined 

by the function z + iR = z, (to) + i-R, (w) (4.6) 
Solution of problem (4.4), (4.5) consists largely in repeating the argument of [2], the 

only difference being that the tiemann function is now the hypergeometric function _ -. 

G=F (++p,&~2;b), ~=-(4RR~~-1~(R-R~)2+(z-~~)2~ 
(4.7) 

Omitting the intervening discussion, we simply write out the solution in its final form, 

CD (u, u; p) = Re {[------ y) ]1’ze(w;P,+~[(+)“2(f+~)F(++P. 
+ - p, 1; a,) - i,-& - p2) ‘R;R.,z (fl - Rz;ze -z1” p + [z, - z] a) x 

- e 

x F (+ + p, + - p, 2; h,j] dE} (4.8) 

he = (4R,R)-l [(R, - R)2 + (z, - z)%l, w = u + iv, 5 = u + iE 

The symbols R,, z,, a, 8, 6, f in the integrand are functions of 5; R and z are 

functions of U, U, which must be determined from (4.6). 
If Cauchy conditions (4.3) are regular in 9, then the solution of the initial three- 

dimensional problem can be written as 

Here $), 6:) are the Fourier coefficients of the function IJ (u, $) ; the R,, z,, a, @, 
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6, f in the integrand are functions of t. Expressions (4.9) satisfy the boundary conditions 

exactly for any number of terms of the series in p. We assume that V and F are periodic 
functions with the period 2n. Extension of the above results to the case of unequal periods 
different from 27~ is trivial. Formula (4.9) extends the solution of p] to the case where 
the Cauchy conditions depend on the azimuth and also to the case of a toroid of arbit- 

rary cross section. 

6. A toroidrl domain with rn irregular function. Let US cut the 
domain Q for the curve rZ out of the flow with circular particle trajectories investigated 

in [7]. The Cauchy conditions are given by the formulas 

cp luZO = V (4 9) = Ree2 (t) (sin*/% 9)“” 

&p I av lozO = 8~ / aR Ic p = F (t, 9) = - 2p (t) Rem3 (t) (sin a/~ 9,)” 

Making use of the Laplace transform 

(5.1) 

a+; 00 

(sin+$)“‘=& \ 0(p)eP+dp, a>0 
a-‘i1, 

(5.2) 

we obtain the following expressions for 6 and f : 

6 k P) = R,-2 @I f3 (~1, f 0; p) = 48 (We-a W (~1 (5.3) 

All we need do now is find 9 (p), make use of formula (4.8). and express cp (R, \p, z) 
in the form (5.2). o. 

e(p)=$ (&-$#)‘h eLP+d$=$~~~~~n~ ~sin’~a~eihUd~ 

0 0 

s = iq I 2js ip 

The integral in the right side can be expressed in terms of the B-function, 

c ei(p-q)J, sinP+q-z Q (121, = e’/~W-Q)” [2Ptq’-2 (p + Q - 1) B (p, q)]-’ 
. . 
0 

On carrying out the transformations we obtain 

The unique singularity of the simple-pole type lies at the point p = 0. Following 
the above procedure, we obtain the two-dimensional potential 

* 3 
1 vi P) = !f$ Re ([R, (w)]-“’ - s [T flF (g + ip, G - ip, 1; J.)+ 

+&-cl tp)( 

,ia 
a 

- Rcz + [ ze - z]” 

2Re 

x R,-‘hdc 
\ 

Finally. making use of (5.5) and recalling (5.2). :re obtain 
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X F -$ + ip, -$ - ip, 2; & Revgfzd~ (5.6) 

Estimation of the contour integrals in (5,6) constitutes an independent problem. We 

note that the potential at sufficient distances from the emitting and collecting surfaces 

can be computed with the aid of the Fourier series 

The potential is given by the expression (5.7) 

XF ++k,+ k, 2; Al) 00s 3kd) ReLYI dE (5.8) 
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